#### Neutrino masses from Planck scale

Takashi Toma

Kyoto University

The 5th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry, Fo-Guang-Shan, Kaohsiung, Taiwan

Based on arXiv:1802.09997 + work in progress In collaboration with Alejandro Ibarra and Patrick Strobl (TUM)



京都大学 KYOTO UNIVERSITY

### Introduction

Neutrinos are massive. (massless in the Standard Model)

• Neutrino oscillation data  $\Rightarrow \mathcal{O}(0.1) \text{ eV}$ 



Esteban et al. JHEP (2017)

- Very small masses of neutrinos and large mixing angles.
- Mild hierarchy of two heaviest masses  $\lesssim 6$ .
- ⇒ different mechanism of mass generation?



 $m_{2}^{2}$ 

 $m_{1}^{2}$ 

 $m_3^2$ 

#### Seesaw mechanism

#### Seesaw mechanism

- There are many neutrino mass generation mechanisms.
- Seesaw mechanism (Type I, Type II, Type III...)

In Type I seesaw (simplest), three heavy right-handed neutrinos  $N_R$ are introduced.

$$\mathcal{L} = -\phi^{\dagger} \overline{\ell_L} y_{\nu} N_R - \frac{1}{2} \overline{N_R^c} M N_R + \text{h.c.}$$
  

$$\rightarrow -\overline{\nu_L} m_D N_R - \frac{1}{2} \overline{N_R^c} M N_R + \text{h.c.} \qquad m_D = y_{\nu} \langle \phi \rangle$$

Mass matrix 
$$\nu_L \quad N_R^c$$
  
 $\begin{pmatrix} 0 & m_D \\ m_D^T & M \end{pmatrix} \rightarrow \begin{array}{c} m_\nu \approx -m_D M^{-1} m_D^T + \cdots \\ (\text{if } m_D \ll M) \end{array}$ 

Rough picture  $m_{\nu} \sim \frac{\dot{y}_{\nu}^2 \langle \phi \rangle^2}{M} \sim 0.1 \text{ eV}$ 

Takashi Toma (Kyoto University)

#### Seesaw mechanism



#### Seesaw mechanism



An energy scale smaller than Planck scale is necessary.

Cannot directly correlate neutrino mass scale and Planck scale.

# The Model

Add three right-handed neutrinos.

$$\mathcal{L} = \frac{1}{2} \overline{N_i} \partial \!\!\!/ N_i - \frac{M_{ij}}{2} \overline{N_i^c} N_j - (Y_\nu)_{ij} \tilde{H} \overline{L_i} N_j + \text{H.c.}$$

Assumption: (almost) rank-1 mass matrix at Planck scale.

$$M \approx \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & M_3 \end{pmatrix}, \qquad M = \begin{pmatrix} M_1 & 0 & 0 \\ 0 & M_2 & 0 \\ 0 & 0 & M_3 \end{pmatrix}$$

at Planck scale

at low energy scale

 $\rightarrow$  reduce number of parameters

■ Right-handed Majorana neutrino masses are expected to be generated via gravitational interactions. ← No flavor discrimination

$$M = M_0 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \mathsf{Mass \ eigenvalues} = 0, 0, 3M_0$$

## Renormalization Group Equation for ${\cal M}$

- $M_1$  and  $M_2$  are generated by radiative effect.
  - $\Rightarrow$  Renormalization group equation (RGE) for M.
- All the diagrams



Takashi Toma (Kyoto University)

## Renormalization Group Equation for ${\cal M}$

At 1-loop, only one diagram contributes

$$\beta_M^{\text{1-loop}} = \frac{dM}{dt} = \frac{1}{(4\pi)^2} \left[ \left( Y_\nu^{\dagger} Y_\nu \right)^T M + M \left( Y_\nu^{\dagger} Y_\nu \right) \right]$$

At 2-loop, there are many contributions

$$\beta_M^{\text{2-loop}} = \frac{dM}{dt} = \frac{4}{\left(4\pi\right)^4} \left(Y_{\nu}^{\dagger} Y_{\nu}\right)^T M\left(Y_{\nu}^{\dagger} Y_{\nu}\right) + \cdots$$

Rank increasing diagram



the other diagrams do not increase rank of M.

## Renormalization Group Equation for ${\cal M}$

Full beta function

$$\begin{aligned} \frac{dM}{dt} &= \frac{1}{(4\pi)^2} \left[ \left( Y_{\nu}^{\dagger} Y_{\nu} \right)^T M + M \left( Y_{\nu}^{\dagger} Y_{\nu} \right) \right] + \frac{4}{(4\pi)^4} \left( Y_{\nu}^{\dagger} Y_{\nu} \right)^T M \left( Y_{\nu}^{\dagger} Y_{\nu} \right) \\ &+ \frac{1}{(4\pi)^4} \left[ \frac{17}{8} \left( g_Y^2 + g_2^2 \right) \left( Y_{\nu}^{\dagger} Y_{\nu} \right) - \frac{1}{4} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} - \frac{1}{4} Y_{\nu}^{\dagger} Y_{e} Y_{e}^{\dagger} Y_{\nu} \right. \\ &\left. - \frac{3}{2} \text{Tr} \left( Y_{e}^{\dagger} Y_{e} + Y_{\nu}^{\dagger} Y_{\nu} + 3Y_{u}^{\dagger} Y_{u} + 3Y_{d}^{\dagger} Y_{d} \right) \left( Y_{\nu}^{\dagger} Y_{\nu} \right) \right]^T M \\ &\left. + \frac{1}{(4\pi)^4} M \left[ \frac{17}{8} \left( g_Y^2 + g_2^2 \right) \left( Y_{\nu}^{\dagger} Y_{\nu} \right) - \frac{1}{4} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} - \frac{1}{4} Y_{\nu}^{\dagger} Y_{e} Y_{e}^{\dagger} Y_{\nu} \right. \\ &\left. - \frac{3}{2} \text{Tr} \left( Y_{e}^{\dagger} Y_{e} + Y_{\nu}^{\dagger} Y_{\nu} + 3Y_{u}^{\dagger} Y_{u} + 3Y_{d}^{\dagger} Y_{d} \right) \left( Y_{\nu}^{\dagger} Y_{\nu} \right) \right] \end{aligned}$$

• We include only M and  $Y_{\nu}$ . The other contributions do not increase rank of M.

Takashi Toma (Kyoto University)

## Analytic solutions

• Iterative integration: 
$$\frac{dM}{dt} = P^T M + MP + 4P^T MP, \quad \left[P \equiv \frac{Y_{\nu}^{\dagger} Y_{\nu}}{(4\pi)^2}\right]$$
$$\rightarrow M(\mu) \approx M(M_P) + \left[P^T M(M_P) + M(M_P)P + 4P^T M(M_P)P\right]$$
$$\times \log\left(\frac{\mu}{M_P}\right)$$

Diagnalize 
$$M(\mu)$$
For Rank  $M = 1$  case  $(M = \text{diag}(0, 0, M_3)$  at Planck scale)
$$M_3(\mu) \approx M_3,$$

$$M_2(\mu) \approx -4M_3P_{32}^2 \log\left(\frac{M_P}{\mu}\right) \rightarrow 10^{14} \text{ GeV for } Y_{\nu} = \mathcal{O}(1)$$

$$M_1(\mu) \approx 8M_3P_{21}^2P_{32}^2 \log^2\left(\frac{M_P}{\mu}\right) \rightarrow 10^9 \text{ GeV for } Y_{\nu} = \mathcal{O}(1)$$

 $\rightarrow M_1(\mu)$  is comparable to four-loop order Takashi Toma (Kyoto University)

### Analytic solutions

For Rank M = 3 case (M = diag(M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub>) at Planck scale) assumption: M<sub>1</sub> ~ M<sub>2</sub> ≪ M<sub>3</sub>

$$\begin{split} M_3(\mu) &\approx M_3, \\ M_2(\mu) &\approx -4M_3 \left( P_{31}^2 + P_{32}^2 \right) \log \left( \frac{M_P}{\mu} \right), \\ M_1(\mu) &\approx 8M_3 \frac{\left[ P_{31} P_{32} \left( P_{11} - P_{22} \right) - P_{21} \left( P_{31}^2 - P_{32}^2 \right) \right]^2}{P_{31}^2 + P_{32}^2} \log^2 \left( \frac{M_P}{\mu} \right) \\ \bullet \ M_1 &= M_2 = 0 \quad \Rightarrow \quad \text{Rank } M = 1 \text{ case is recovered.} \end{split}$$

If tree contribution  $M_1, M_2$  is larger than loop induced mass,

$$M_1(\mu) \approx \frac{M_2 P_{31}^2 + M_1 P_{32}^2}{P_{31}^2 + P_{32}^2}$$

# Numerical analysis (Rank M = 1, Rank $Y_{\nu} = 2$ )



# Numerical analysis (Rank M = 1, Rank $Y_{\nu} = 2$ )



- 2nd lightest state (red) is always  $\sim 0.1 \text{ eV}$ .
- The other two states: y₂v ± M₁|µ Pseudo Dirac state is constructed by (v₁, N₁) if y₂ ≤ 10<sup>-2</sup>.
   cannot generate mild hierarchy

# Numerical analysis (Rank M = 2, Rank $Y_{\nu} = 2$ )



- At Planck scale
  - $M = \operatorname{diag}\left(0, M_2, M_P\right)$
  - $Y_D = \text{diag}(0, y_2, 1)$  $M_2 = 10^9 \text{ GeV}$
- Heaviest, 2nd heaviest, lightest are same with Rank M = 1 case.

Mild hierarchy of small neutrino masses can be obtained if  $10^{-4} \lesssim y_2 \lesssim 10^{-2}$ 

## Summary

- If right-handed neutrino masses are very hierarchical at Planck scale, radiative corrections dominate right-handed neutrino masses at low energy scale.
- Without any new energy scale, one of small neutrino masses is naturally generated via seesaw mechanism.

#### Future Works

- **1** More detailed analysis.
- 2 This framework leads predictive phenomenology because of reduced number of parameters.

Ex. application to leptogenesis, the other scenarios with hierarchical mass spectrum.